skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yin, Ping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. The assembly of nitrogen-rich building blocks determines the energy storage capacity and affects the stability of energetic materials. Owing to the environmentally harmful properties of the propellant, ammonium perchlorate (AP), much research has explored halogen-free replacements which often suffer from poor thermal stability. In our goal of balancing performance and stability, we report access to an energetic molecule (3) by smart assembly of an azo bridge into trinitromethyl triazoles. Compound 3 exhibits a decomposition temperature of 175 °C, which approaches the highest among reported trinitromethyl derivatives. The density (1.91 g cm −3 ) and oxygen balance (+29%) for 3 exceed other candidates, suggesting it as a high energy dense oxidizer (HEDO) replacement for AP in rocket propellants. One-step azo-involved cyclization of 3 give two fused nitro triazolones, (FNTO) 4 and its N -oxide 5, having thermal stabilities and energies superior to the analogous derivatives of 5-nitro-2,4-dihydro-3 H -1,2,4-triazole-3-one (NTO). The comparison of properties of the fused triazolones 4 and 8 and their N -oxide derivatives 5 and 9 shows that formation of an N -oxide is an effective strategy which results in an increase of the decomposition temperature, oxygen balance, specific impulse, and detonation properties and in a decrease of the sensitivity of the corresponding energetic material. This work highlights bridged and fused triazolic energetic frameworks with an azo building block providing an alternative structural motif for seeking an applicable high-energy ingredient. 
    more » « less
  3. null (Ed.)
  4. Aldosterone-producing adenomas (APAs) are the commonest curable cause of hypertension. Most have gain-of-function somatic mutations of ion channels or transporters. Herein we report the discovery, replication and phenotype of mutations in the neuronal cell adhesion geneCADM1. Independent whole exome sequencing of 40 and 81 APAs found intramembranous p.Val380Asp or p.Gly379Asp variants in two patients whose hypertension and periodic primary aldosteronism were cured by adrenalectomy. Replication identified two more APAs with each variant (total,n = 6). The most upregulated gene (10- to 25-fold) in human adrenocortical H295R cells transduced with the mutations (compared to wildtype) was CYP11B2 (aldosterone synthase), and biological rhythms were the most differentially expressed process. CADM1 knockdown or mutation inhibited gap junction (GJ)-permeable dye transfer. GJ blockade by Gap27 increased CYP11B2 similarly to CADM1 mutation. Human adrenal zona glomerulosa (ZG) expression of GJA1 (the main GJ protein) was patchy, and annular GJs (sequelae of GJ communication) were less prominent in CYP11B2-positive micronodules than adjacent ZG. Somatic mutations ofCADM1cause reversible hypertension and reveal a role for GJ communication in suppressing physiological aldosterone production. 
    more » « less